ABSTRACTS

EFFECTS OF VIBRATION ON SOIL FREEZING
AROUND A BOREHOLE

I. M. Astrakhan, S, M, Gadiev, UDC 536.421.4
and B. A, Krasovitskii

The freezing of soil by an oscillating flow of cold gas is considered; it is found that an oscillatory
gas flow increases the heat-transfer coefficient to the borehole wall. A study has been made of the effects
of the heat-transfer coefficient on the movement of the freezing boundary, One-dimensional equations are
used for the heat flux in the frozen and unfrozen parts of the soil, Stefan's condition is used at the freezing
boundary., The solution is found by successive approximation, In the semiinfinite unfrozen region, the
solution may be derived by introducing a thermal-influence radius, beyond which there are no thermal per-
turbations, and at which the temperature and heat flux are continuous.

A system of two ordinary differential equations is used to determine the position of the freezing
boundary and the above radius as functions of time, A Nairi computer has been used to solve the system
numerically via a standard program for specified values of the parameters. The results are presented
for various values of the heat-transfer coefficient and show that there is a substantial increase in the rate
of advance of the boundary as the heat-transfer increases, .

Original article submitted June 27, 1972,
Abstract submitted February 25, 1973,

HEAT TRANSFER FOR A LIQUID BOILING IN A
BED OF GRANULAR MATERIAL

Z. R. Gorbis, G. F. Smirnov, UDC 536.423.1:541.,182
and G. A. Savchenkov :

‘An experimental study is reported for heat transfer and critical heat loadings for a liquid boiling in
a layer of granular material,

The heating was provided by a wire, while the granular material was quartz sand, the heat carrier
being at atmospheric pressure 5°C below the boiling point, The measurements were made with a deep
layer of water and capillary water influx,

It is found that three different heat-transfer mechanisms are involved in the boiling in such beds,
and each involves a critical heat loading:

1) transport by a process equivalent to thermal conduction;

-2} transport in a fluidized mode;

3) transport with channeling,

The second and third conditions can be realized in accordance with the depth of the wire in the bed.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 26, No. 3, pp. 544-551, March, 1974,
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The established hydrodynamic theory of beiling crises can be modified to give the following relation--
ship for the wire: '
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and then the relationships are as follows for the critical heat loadings:
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in the channeling state,
The results are in satisfactory agreement with experiment, Heat-transfer data are presented to-
gether with empirical formulas., Photographs of the different states are presented.
NOTATION

der is the critical heat load; .
r,o,p'p" v" are the heat of evaporation, surface tension, vapor density, liquid density, and kine~
matic viscosity of vapor;

k; = 0.13-0.22 is the coefficient of proportionality;

der, is the eritical heat loading on boiling in the free liquid at the same pressure and tem-
perature; :

Hla, €, ps are the depth of layer, porosity, and density of the solid component;

dp, Ly, m are the diameter and length of heater and number of channels;

Dg, ¢ are the diameter of channel and volume of vapor in channel.

1t was assumed that -g—p = 0.8 in the calculations; it was shown that Dg may be taken as equal to the
diameter of a bubble on breaking away, as in the experiments, and a formula is suggested for determining
m,
Original article submitted April 10, 1972,
Abstract submitted February 20, 1973,

CONTINUOUS PLASTIC-VISCOSITY MEASUREMENT ON
A LIQUID FROM THE DAMPED RECIPROCATING
MOTION OF A PLATE

I. N. Kogan and N. N, Kartashov UDC 621.6.034:539.214

The authors consider the scope for using damped oscillation of a system with lumped parameters to
monitor the plastic viscosity of a liquid obeying Bingham's law.

The equations for the boundary layer in such a medium are used to derive theoretically the relation-
ship between the plastic voscosity and the damping parameter for a plate freely vibrating as a whole, which
is linked to a spring and is perpendicular to the steady flow of viscoplastic liquid.

It is assumed that the vibration amplitude is small (¢, < L) and that 2mUq /S > 11 (which is equiva-
lent to the condition VpU®n/2L > 77T), in which case the relationship takes the form

e=K¥V oy, K= | 47

o

This relationship enables one to monitor the plastic viscosity continuously.

385



NOTATION

* is the amplitude of vibration;
are the length and thickness of plate;
is the mass;
is the velocity of incident flow;
is the damping factor for the vibrational system;
is the area of one face of plate;
are the density, plastic viscosity, and yield point of liquid;
is the coefficient of proportionality between damping parameter and square root of the product
of plastic viscosity and density;
is the density of plate material,
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Original article submitted June 23, 1972,
Abstract submitted March 13, 1973,

TEMPERATURE DISTRIBUTION IN A FLAT CONDUCTOR
WITH TEMPERATURE-DEPENDENT RESISTIVITY
CARRYING AN ALTERNATING CURRENT

R. 8. Kuznetskii ' UDC 538.56+536.212.2

The steady-state temperature distribution is described together with that of a monochromatic electric
field in a planar conductor 0 = x = 2 by the following system of differential equations:

17— -y, w”-:—niou, o -:nlou; : (1)
w(® 1, (0 o) Q) =e ()0 (1) -0

(0 = x = 1), where X is coordinate, t is temperature reckoned from the temperature at the surface of the
wire, e =u + iv is the complex electric field amplitude, ¢ = g(t) = (1 + kt)~? is the conductivity referred
respectively to the half-thickness of a conducting planar layer g, to the combination (aeo)zgo /22, and to
the amplitude of the electric field at the surface of the conductor e), where the conductivity is ¢, = g(0);
n = av oguw (the frequency factor) and k = ool@eg)?a/2 2 (the nonlinearity parameter) are the definitive
criteria in the problem; A, u, and o are the thermal conductivity, magnetic permeability and temperature
coefficient of the specific resistance p(t) = o~ 1(t) of the conductor; and  is the circular frequency of the
field,

We are interested in the asymptotic behavior of t for large k; if

ep er("x)] / k = », the solutions to (1) are almost everywhere the constants t = v
28 : ' =0, u=1 so (1) readily shows that v ~t =0(k™?/?) and u = 1-0(k™?)
' 4 for k large (weak dependence on field and temperature, strong current

skin effect), The first equation in (1) takes the asymptotic form t"
= —(kt + 1)1 if one substitutes the principal term for the square of the

04 ° ~ field modulus and integrates twice in quadratures:
' 2, et
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where ¥(¢) is a function reciprocal to the probability integral ¢ (n) and
Fig. 1. The factor , the constant of integration p[t(1)] is defined by p[t(1)]&{VInpft)1}
exp [~ ¥ (1-x)] characteriz- = V' 2k/7; in this approximation, t is not dependent on n.
ing the coordinate dependence
ofgtJ (7 /2)k for large values If kt(1) > 1 (or else vk > V7 /2)8{VInp[t(1)]} ~1), and (2) -
of k. becomes R
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{Fig. 1), where the residue is negligibly small,

We integrate equations (1) twice with respect to v"* and u" to get revised asymptotic estimates in-
corporating the role of n for the temperature and field components for k large:

t~ BT e~ T L —el s L —u~ ke, arge =0 ~ — 02T (x > ). (4)

This relationship can readily be transferred to the case of any reasonably rapidly decreasing o(t)
while retaining the above general features. In particular, in an analogous asymptotic case we have in
place of (3) the integral relations

t
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wherd the constant of integration of t of (1) is defined by ‘/’m— =1e .
o (rydt

Original article submitted August 11, 1972,
Abstract submitted February 23, 1973,

UPWARD FLOW OF A LIQUID FILM IN RESPONSE
TO A SPIRAL GAS FLOW

V. M. Sobin and A, I. Ershov UDC 532.529.5.001

Results are given from an experimental study of the film thickness for a two-phase spiral flow in a
short tube. The film thickness was measured with a contact needle. The main tests were done in a tube
with d = 30 mm, and i/d = 5. The spiral gas flow was provided by 6 tangential slots of height equal to
the diameter and with a ratio of the total slot area to the area of tube cross-section n = 1.0 (spirality
parameter of the flow), The liquid was admitted via a ring slot in the wall of width 2 mm at a distance
0.5 d above the tangential channels, The tests were done withRefj for the film of 70-1100 and Regfor the
gas of 3,3-8.0-10', Measurements were made of the minimum film thickness representing a continuous
layer of liquid directly at the wall, the average thickness éday, and the maximum thickness 6max.

1t was found that the surface of the film is always perturbed by irregular waves of different types,
which are elongated formations, with émax/8ay of 4 or larger,

It was also found that émin may be of the order of 0.01 mm, i.e., the main body of the liquid travels
in the waves. The results are described to +12% by

Srmi
-—“;—m = 248.100Reg!? . (1)
The results were examined as regards the dependence of 6,5y and émax on Refj, whichreveal three
hydrodynamic states of film flow. The first state C is observed up to afilmRegj of about 300, while the
~ second D occurs over the range 300 to 600, and the third E above 600, The results are represented fo
+15% and 179 respectively by

d o x\¢
ZV = ARez” Reg; (7) , (2)
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TABLE 1

Mode LA | e |0 ¢ B | h £

¢ 2,033.10¢ | 1,61 |0,323] 0,2 | 46,25 " | 1,4 |1,195) 0,335

D 10,5 1,3 1,1 0,31 10,5 -} 1,1 [0,918] 0,26

E 1,097.108 | 1,3 10,391} 0,2 7,715.102 7| 131 0,26 i 0,125
6lmai_.“:r T TIalt _x_k : (3
a PRy «Rffé;(d) !

Table 1 gives the results,

State C corresponds to laminar flow of the liquid and is characterized by relatively_ stable wave pro-
duction, In that state one can get Taylor —Goettler vortices, In state D, the film is turbulent, while in
state E there is considerable removal of liquid from the surface of the film as droplets in the gas flow, so
dgy and opax vary little with the Reg for the films,

A study has also been made of the effects of viscosity and tube diameter, Values have been drawn
up for Oay in axial and spiral flows.

NOTATION

X is the longitudinal coordinate;

d,! are the diameter and length of tube;

Reg =ud/ v is the Reynolds number for the gas;

Refj =W/zdvw  is the Reynolds number for the liquidfilm;
u is the mean axial velocity of gas;

w is the liquid volume flow rate;

v, Vw are the kinematic velocity of gas and water,

QOriginal article submitted April 10, 1972,
Abstract submitted March 9, 1973,

TRANSITION FUNCTIONS AND’TH-E:SOLUTION OF DIRECT
AND INVERSE PROBLEMS IN THERMOELASTICITY
FOR A PLATE '

B. I. Strikitsa » UDC 539.377

The thermoelastic stresses in a body are usually derived from the temperature distribution; the
method is presented for solving the thermoelastic problem for a plate with symmetrical boundary condi-
tions of the third kindusing transition functions, These simplify the procedure for deriving the stresses
without deriving the temperature distribution in an explicit form, The stress is given by

N
A
O (2 Foy) = 3y Bl (Fon). —5= [oe— 0 (R, Fon)] 80333 2y Foy_pia)-
h=1 .
The surface temperature is 4(R, FoN) is found from
N—1 i ]
(R, Foy) = 1—[*1:4" { Ayve + 2 Bi (Fop) —~ [ve — (R, Fop)}avi? (R, Foy_nin)| s
TEN k=1 v

where Ay = Bi(Fo)(A/ R)vlz-‘[2 (R, Foy); VPZ(R, Foy) is the transition function for the thermal-conduction

case, and gy,(zk, FoN) is the same for the thermoelastic problem, while.v = t—t, and t; is the initial tem-
perature of the plate.
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In engineering, one often has {o maintain some specified stresses at particular points in the body;
this inverse problem can be solved for a plate with symmetrical boundary conditions by determining the
heat~flux density from

N—1

o(Foy) = W{ us (o) — ¥ 0(F0) 805 G, Foy_yy) |-
h—«l
From the heat-flux density one can readily determine the temperature at the surface, and then the heat-
transfer coefficient for a given external temperature (or else the external temperature for a given varia-
tion in the heat transfer),

These methods are used to consider the optimum heating of 2 flange in a horizontal port in steam
turbines. The heating occurs in two stages. In the first stage one has to consider the thermoelastic prob-
lem up to the point where the limiting permissible stress is attained. For this purpose one specifies a
law for the steam temperature variation with a maximum rate of change determined by the engineering
possibilities, In the second stage one solves the inverse thermoelastic problem, which is controlled by
the limiting permissible siress and one thereby obtaing the temperature of the medium with a known law
for the heat-transfer coefficient.

Original article submitted March 9, 1972.
Abstract submitted March 6, 1973,

CALCULATION OF PIPELINE STRESS AND TEMPERATURE
BY INITIAL-CONDITION RELAXATION AND TIME STEPPING

B. N. Tokarskii ' UDC 536.24.02

A method is given for calculating the transient temperature and stress distributions in a pipeline
for arbitrary variations in the surrounding temperature and the heat-transfer coefficient at the internal
surface. The distribution of T is determined for instants 7, (v =1, 2, ... ), and this is a function of
the boundary conditions for 7 , in the period from 7,4 to 7, together W1th the initial conditions at Ty...i
The instants T, are chosen in such a way that the time interval At = 7, -1, resulis in negligible
changes in the heat-transfer coefficient and the thermophysical properties, while being sufficient for one
to ease the boundary conditions on the basis t,,, = t_,,_I (here t. y~ is the mean-integral wall temperature).

Each of the intervals At is itself divided into intervals 7 (k =0, 1, ..., m), which correspond
to the vertices on a bent line, which represents the temperature of the environment as a function of time,
The final solution for time 7, for a given ‘EV -4 can be obtained by linear superposition of the solutions for
stepwise and linear variation in the surrounding temperature.

The minimum permissible value for Ar, corresponds to Fo = 0,3 (Fo is the Fourier criterion). The
results from this method agree satisfactorily with those from computer treatment,
Ovriginal article submitted April 3, 1972,
Abstract submitted March 12, 1973,

DERIVATION OF HEAT- AND MASS-TRANSFER COEFFICIENTS
FOK HEAT EXCHANGERS FROM FREQUENCY CHARACTERISTICS

I. G. Chumak and A. I. Kokhanskii UDC 536.24.08

Refrigerating and heating equipment employs systems with extensive surfaces with fins of various
shapes, tubes .of various cross-sections, and tube bundles, Calculations on such equipment require a
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knowledge of the heat- and mass-transfer coefficients in terms of the thermal and hydraulic characteristics.
There is theréfore considerable interest in devising methods of calculating mean values, and any such
technique should be suitable not only for laboratory work but also for actual industrial conditions,

A method is presented for calculating o and g as follows:

1. Equations are derived for the transient processes in a heat transfer apparatus as an object with

distributed parameters and various perturbing and control channels, For this purpose one proceeds as
follows:

a) one writes out the equations for heat and material balance in the equipment in differential form
with partial derivatives;

b) the appropriate transformations are performed to linearize the relationships (step a) for small
deviations, with zero initial conditions; a Laplace transformation is applied with respect to the
appropriate coordinates (time anda coordinate characterizing the distribution of the parameters
in the heat exchanger);

¢) the system of equations is solved (step b) in operator form by appropriate methods;

d) an inverse Laplace transformation is applied with respect to the appropriate coordinates. The
theory of operational calculus is used to obtain the transfer functions for the heat exchanger that
define the transient process in respect of various perturbations,

2. One uses the equation from a step d above to derive the real and imaginary frequency char-
acteristies, '

3. If the input perturbation is not a stepwise one (as occurs under actual industrial use of such equip-
ment), one determines the real and imaginary parts of the frequency characteristics from the curve re-
preseuting the perturbation as a function of time.

4, Generalized real and imaginary frequency characteristics are derived as in point 2 above for a
given perturbation (point 3),

5. The transient response of the exchange to a given perturbation is used with the same approach
(point 3 above) to calculate the real and imaginary frequency characteristics of the object that can be deter-
mined by experiment,

6. The real and imaginary generalized frequency characteristics of point 2 above are compared with
the real and imaginary frequency characteristics of point 5 for a given frequency wj:

Req () = P (01) Pg (7) — Q (03) Qg (03) = Ree (@1); . (1)
Qa (mi) =P ((1),) -QG ((')i) +Q (03) PG (ml) = Ime((‘)i)» (2)

where P(wj) and Q(wj) are the real and imaginary freguency characteristics of point 2, while P(wi) and
Qg (wi) are the real and imaginary frequency characteristics of the perturbation..

Then from (1) and (2) one can determine o and @; in (1) and (2) one can use frequencies fromw, = 0to
weo (the cutoff frequency), However, one should avoid resonance frequencies commonly found in such
systems. '

This method allows one to determine the transfer coefficients for laboratory and industrial equip-

ent, which greatly facilitates design.
o ¢ Y Original article submitted June 5, 1972,
Abstract submitted March 22, 1973.
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